Coefficient of variation of and effect of conditioning on concentration of plasma total and free iodothyronines in Thoroughbred horses

Adriana Fertazzo, Estorina Fazio, P. Medica and A. Lindner*

Institute of Veterinary Physiology, University of Messina, Italy
*Arbeitsgruppe Pferd, Bonn, Germany

Summary
The coefficient of variation of T₄, fT₄, T₃, and fT₃ concentrations in blood plasma of horses before and after exercise was determined. In addition, the effect of six different conditioning programs on plasma T₄, fT₄, T₃, and fT₃ concentration of five Thoroughbred horses was studied in a latin square cross over study design. Each conditioning programme consisted of eleven repetitions of exercise of 5, 15 or 25 minutes' duration at a velocity at which, mathematically, horses had a blood lactate concentration of 2.5 or 4 mmol/l.

None of the conditioning programmes had an effect on plasma concentration of thyroid hormones.

Keywords: conditioning, exercise, coefficient of variation, thyroid hormones, blood plasma, horse

Variationskoeffizient der und Einfluß von Training auf die Konzentration von Schilddrüsenhormonen im Blutplasma von englischen Vollblütern


Keines der Trainingsprogramme verursachte signifikante Veränderungen der Konzentration von T₄, fT₄, T₃, und fT₃ im Plasma der Pferde.

Schlüsselwörter: Training, Belastung, Variationskoeffizient, Schilddrüsenhormone, Blutplasma, Pferd

Introduction

The involvement of the pituitary-thyroid axis in physical activity and performance is not fully understood. However, it could play an important role in supporting the energy requirements during exercise, improving both neuro muscular performance and thermal adaptation (Irvine 1993; Lomax and Robertson 1992).

Data obtained from men after exercise (Terblanche 1989) and conditioning (Irvine 1985; Balsam and Loppe 1976; Boyden et al. 1982; Pokarinen et al. 1988; Allen et al. 1993) is not very conclusive, probably due to the large differences in exercise and conditioning programmes studied.

In horses, the behaviour of plasma total and free iodothyronines after a prolonged riding-school session (Fertazzo and Piccione 1991), after a light exercise session (Fazio et al. 1993), after a race (Fazio et al. 1994), and after a standardized exercise test (Fertazzo et al. 1995) suggests a higher responsiveness of free hormones to exercise and an influence of competition experience on T₃ and fT₄ levels. Data on the effect of conditioning on thyroid hormone levels in horses is not available and the data found in literature to estimate the value of measuring blood thyroid hormone concentrations for evaluation of performance capacity is not sufficient (Thornton 1985).

In this study the following questions were addressed:

1. What is the coefficient of variation of T₄, fT₄, T₃, and fT₃ concentration in plasma of horses before and after exercise?

2. What effect do different conditioning programmes have on T₄, fT₄, T₃, and fT₃ concentration in plasma of horses?

Materials and methods

Horses

Five Thoroughbred horses were included in this study (two were 3 years old and three were 2 years old at the beginning of the study; Mean body weight ± standard deviation of 448 ± 19 kg; One gelding and four mares). They were trained for two months to run on a motorized treadmill (6% incline). All standardized exercise workouts and tests were done on a treadmill.

Study design

Study to determine coefficient of variation: Blood was taken from the horses before exercise at 7:00 a.m. and immediately after the end of exercise. This was repeated four times for each horse on days 1, 7, 13 and 19 of a single conditioning programme. Dur-
Tab. 1: Coefficient of variance (%) of plasma thyroid hormone concentrations in horses before and after exercise (exercise repeated four times/horse)

<table>
<thead>
<tr>
<th>Horse</th>
<th>T4 before</th>
<th>T4 after</th>
<th>fT4 before</th>
<th>fT4 after</th>
<th>T3 before</th>
<th>T3 after</th>
<th>fT3 before</th>
<th>fT3 after</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.27</td>
<td>14.05</td>
<td>9.55</td>
<td>13.42</td>
<td>10.30</td>
<td>11.02</td>
<td>16.67</td>
<td>28.57</td>
</tr>
<tr>
<td>2</td>
<td>13.48</td>
<td>5.16</td>
<td>12.27</td>
<td>9.53</td>
<td>5.06</td>
<td>60.75</td>
<td>16.67</td>
<td>12.50</td>
</tr>
<tr>
<td>3</td>
<td>19.72</td>
<td>11.68</td>
<td>13.27</td>
<td>8.77</td>
<td>17.32</td>
<td>5.84</td>
<td>16.67</td>
<td>16.67</td>
</tr>
<tr>
<td>4</td>
<td>10.84</td>
<td>9.72</td>
<td>12.49</td>
<td>9.00</td>
<td>9.49</td>
<td>11.39</td>
<td>16.67</td>
<td>14.29</td>
</tr>
<tr>
<td>5</td>
<td>5.80</td>
<td>7.78</td>
<td>21.28</td>
<td>8.84</td>
<td>6.75</td>
<td>10.30</td>
<td>33.33</td>
<td>14.29</td>
</tr>
</tbody>
</table>

Conditioning study: The duration of exercise was 5, 15 or 25 minutes, and horses were run at V2.5 or V4 (V2.5 or V4: velocity at which, mathematically, a lactate concentration of 2.5 or 4 mmol/l blood is determined, when it is run under defined conditions). The V2.5 and V4 of each horse was determined with a standardised exercise test two days before the beginning of this study. The mean V2.5 and V4 were 6.60 ± 0.28 m/s (two horses) and 8.00 ± 0.48 m/s (three horses) respectively. Conditioning study: In a randomized 5x6 latin square cross over study design (five horses x 6 conditioning programmes), horses were exercised at V2.5 or V4 during 5, 15 or 25 minutes for 11 times with one day of rest between two consecutive workouts. Before each conditioning programme horses performed a standardised exercise test to determine their individual V2.5 and V4. To examine the effect of the conditioning programme on T3, fT3, T4 and fT4 concentration in plasma, blood samples were always taken from the horses at 7:00 a.m., before and after each conditioning programme. Horses had about one week without standardised exercise between conditioning programmes. During this period horses were walked and trotted on the treadmill every second day and had access to paddocks on days in between.

Standardized exercise test:
The standardized exercise test consisted of several gallop workouts of five minutes’ duration each. Between two consecutive steps there was a resting period of 60 s. The velocity in the first step was 6.0 m/s. Each consecutive step was increased by 0.5 m/s. The test was finished when the horses’ blood lactate concentration was above 4 mmol/l. V2.5 and V4 were determined from the individual blood lactate concentration-running speed relationship by exponential regression equation (Galloux 1991).

Blood sample handling and T4, fT4, T3, fT3 analysis:
Blood was collected from a jugular vein into evacuated tubes containing Na-heparinate. Within 30 minutes samples were centrifuged at 6,000g for 10 minutes, and the plasma was transferred to plastic vials and kept stored at -20°C until analysis, which was normally done within two months. Plasma concentrations of T4, fT4, T3 and fT3 were analyzed by enzyme-linked immunosassay methods (Boehringer Biochemica Robin).

Statistics:
Data are presented as mean ± standard deviation. The coefficient of variation of the variables before and after exercise was calculated dividing the standard deviation through the mean and multiplying by 100. Effects of conditioning programmes on variables was examined with analysis of variance for repeated measures. p<0.05 was used as level to denote significant differences.

Results:
The coefficient of variation before exercise of single horses ranged from 5.8% to 19.7%, 9.6% to 21.3%, 5.1% to 13.4%, and 16.7% to 28.5%

Tab. 2: Effect of different conditioning programmes on blood plasma thyroid hormones of horses (n = 5; mean ± standard deviation)

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Time of blood sampling</th>
<th>Conditioning programme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V2.5 5 minutes</td>
<td>V2.5 15 minutes</td>
</tr>
<tr>
<td>T4 (nmol/l)</td>
<td>before</td>
<td>25.3 ± 6.3</td>
</tr>
<tr>
<td></td>
<td>after</td>
<td>25.4 ± 9.5</td>
</tr>
<tr>
<td>fT4 (pmol/l)</td>
<td>before</td>
<td>8.5 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>after</td>
<td>8.3 ± 2.6</td>
</tr>
<tr>
<td>T3 (nmol/l)</td>
<td>before</td>
<td>2.12 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>after</td>
<td>1.80 ± 0.16</td>
</tr>
<tr>
<td>fT3 (pmol/l)</td>
<td>before</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>after</td>
<td>0.06 ± 0.01</td>
</tr>
</tbody>
</table>
to 33.3% for T₄, T₃, T₂ and T₁. After exercise the values were between 5.2% and 14.1%, 8.8% and 13.4%, 5.8% and 60.8%, and 12.5% and 28.6% for T₄, T₃, T₂ and T₁ respectively (Tab. 1).

None of the conditioning programmes had an effect on plasma concentration of thyroid hormones (Tab. 2).

Discussion

The variability of the plasma thyroid hormones within a horse before and after exercise can be remarkably high and may be a reason for the lack of congruent results in horses on the practical value of blood thyroid hormone evaluation for performance diagnosis (Thornton 1985). There was no effect of conditioning on plasma thyroid hormone levels in resting horses (7:00 a.m. samples). This may be because intensities and the durations of exercise chosen were not large enough to induce adaptations of the organism sufficiently large to overcome the great variability encountered for these variables in plasma.

It may also be possible that the adaptation of the pithy-thyroid axis to conditioning was only at the level of the receptors or in total hormone production and therefore was not reflected in the plasma hormone concentrations (Katzef et al. 1988).

The lack of measurable effects of the conditioning programmes used may be also because our horses went through a thorough preparation period before starting the experiment. During the pre-experimental period heart rate during exercise and blood lactate concentration after exercise decreased, and this increased indicating the adaptation of the horses to the training workloads imposed.

Therefore, it may be that the lack of measurable changes of thyroid hormone concentrations in blood plasma was due to the rather high endurance capacity of the horses which could not be further improved by the conditioning programmes examined (Warkmann et al. 1996).

Studies in horses on the effect of conditioning on thyroid hormone concentrations in blood were not found. In man, the interpretation of the results on the effect of conditioning on thyroid hormone levels is conflicting. The results of Irvine (1968) showed that conditioning increases the degradation rate of T₄ whilst the study of Balsam and Leppo (1975) did not support this hypothesis. Boyden et al. (1982) have suggested that conditioning may impair thyroid function, and the data of Pakarinen et al. (1991) demonstrated that very intense exercise during one week inhibits the secretion of TSH and TRH.

The results of this study demonstrated that exercise of up to 25 minutes' duration and at v₂₀ and v₂₄ during a period of three days does not affect basal plasma thyroid hormone levels. The sometimes very high individual variability of plasma thyroid hormone concentrations before and after exercise may hamper its value for assessing conditioning effects and performance diagnosis of horses. Nevertheless, further studies on the effects of conditioning with longer and with shorter but more intensive exercise on thyroid hormone levels in blood and their interaction with the different tissues involved in exercise should be done to find out whether it is worthwhile to measure these endocrinological variables in healthy horses.

References


Acknowledgements

We are very grateful to Verein zur Förderung der Forschung im Pferdesport, Wissenschaftliche Gesellschaft der Schwarzwal-Tierklinik, Höveler Spezialfutterwerke and Horst Dieter Beyer for the material and financial support, to Dr. Billingermaier of the Institut für Klinische Biochemie of the University of Bonn for allowing us to run all the lactate analyses in his laboratory and to Dr. Sommer of the Institut für Anatomie, Physiologie und Hygiene der Universität of the University of Bonn for providing logistical support.

This work was supported by a grant (60%) from MURST, Italy.

Adriana Fazzio
Esterina Fazio
P. Medica
Istituto di Fisiologia generale e Speciale degli Animali domestici e Cliniche Diologica
Università di Messina
Facoltà di medicina e chirurgia
Via T. Cannizzo, 278
98122 Messina, Italia
Tel. (099) 90 71 34 48-77 45 97